skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ma, Yanxiao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Photoelectrochemical (PEC) hydrogen generation is a promising solar energy harvesting technique to address the concerns about the ongoing energy crisis. Antimony selenide (Sb2Se3) with van der Waals‐bonded quasi‐1D (Q1D) nanoribbons, for instance, (Sb4Se6)n, has attracted considerable interest as a light absorber with Earth‐abundant elements, suitable bandgap, and a desired sunlight absorption coefficient. By tuning its anisotropic growth behavior, it is possible to achieve Sb2Se3films with nanostructured morphologies that can improve the light absorption and photogenerated charge carrier separation, eventually boosting the PEC water‐splitting performance. Herein, high‐quality Sb2Se3films with nanorod (NR) array surface morphologies are synthesized by a low‐cost, high‐yield, and scalable close‐spaced sublimation technique. By sputtering a nonprecious and scalable crystalline molybdenum sulfide (MoS2) film as a cocatalyst and a protective layer on Sb2Se3NR arrays, the fabricated core–shell structured MoS2/Sb2Se3NR PEC devices can achieve a photocurrent density as high as −10 mA cm−2at 0 VRHEin a buffered near‐neutral solution (pH 6.5) under a standard simulated air mass 1.5 solar illumination. The scalable manufacturing of nanostructured MoS2/Sb2Se3NR array thin‐film photocathode electrodes for efficient PEC water splitting to generate solar fuel is demonstrated. 
    more » « less